CREDIT CONSTRAINTS AND RURAL FARMERS WELFARE IN AN AGRARIAN ECONOMY

CREDIT CONSTRAINTS AND RURAL FARMERS WELFARE IN AN AGRARIAN ECONOMY

Subject Area: Education / Adult Learning / Economatric

Modified: 29th August 2025

Credit constraints limit rural farmers’ access to essential financial resources, hindering agricultural productivity and overall welfare. This study explores the impact of these constraints in agrarian economies, focusing on factors like age, land ownership, interest rates, and family size that affect access to formal credit. Through various econometric models, we aim to understand how these factors influence farmers’ credit application and their welfare.

Prices from

£ 149

Estimated costs for: Undergraduate 2:2 • 1000 words • 7 day delivery
Delivered on-time or your money back

Rated 4.4/5

Table Of Content

Referencing Tools

S. No

Contents

Page

1

Farmer characteristics

2

2

Association between credit constraints and credit application status

3

3

Ordinary Least Square (OLS)

6

4

Logistic regression

7

5

Heckman Selection model

7

6

Endogenous switching regression model

7

Table 1: Farmer characteristics

 

Frequency (n) 

Percentage (%) 

Gender 

 

 

Female 

0.3 

Male 

573 

99.7 

Marital status 

 

 

Married 

559 

97.2 

Unmarried 

16 

2.8 

Educational level 

 

 

No 

62 

10.8 

Primary 

105 

18.3 

Middle School 

120 

20.9 

High School 

127 

22.1 

College 

70 

12.2 

University 

91 

15.8 

Farming 

 

 

No 

0.7 

Yes 

571 

99.3 

Job 

 

 

No 

457 

79.5 

Yes 

118 

20.5 

Dairy 

 

 

No 

559 

97.2 

Yes 

16 

2.8 

Rented/Own 

 

 

Rented 

0.5 

Own 

545 

94.8 

Lease 

0.9 

Farming 

22 

3.8 

Migrated 

 

 

Yes 

1.6 

No 

566 

98.4 

Farming Experience 

 

 

Yes 

575 

100.0 

If yes, no. of years 

 

 

<=11  

196 

34.1 

12-20  

262 

45.6 

>=21 

117 

20.3 

Religion 

 

 

Muslim 

575 

100.0 

Family health status 

 

 

Healthy 

572 

99.5 

Unhealthy 

0.5 

Livestock holding 

 

 

Yes 

166 

28.9 

No 

409 

71.1 

 

Mean 

Maximum 

Minimum 

Family members 

10.45 

39 

People over sixty years 

1.45 

 

Get Help With Your Proposal

If you need assistance with writing your proposal, our professional Dissertation Proposal Writing Service is here to help!

Table 2: Association between credit constraints and credit application status

Number of credit constrained 

households 

Credit application status 

Total 

Household who applied 

for formal credit 

Household who did not applied for formal credit 

n(%) 

No 

153 (59.1) 

136 (43.0) 

289 (50.3) 

Yes 

106 (40.9) 

180 (57.0) 

286 (49.7) 

Total  

259 (100.0) 

316 (100.0) 

575 (100.0) 

Chi-square value: 14.640, p-value: 0.000<0.05 

Table 3 Ordinary Least Square (OLS)

Credcont2 

Coefficient 

SE 

R-squared 

t-value 

p-value 

age 

0.000 

0.001 

0.923 

0.840 

0.401 

landownn1 

-0.007 

0.028 

-0.240 

0.814 

lnintrate 

-0.326 

0.004 

-73.670 

0.000** 

lntotarea 

-0.022 

0.013 

-1.680 

0.093 

famsize2 

-0.003 

0.013 

-0.220 

0.826 

accesset 

0.062 

0.018 

3.400 

0.001** 

lnagrinc 

0.019 

0.010 

1.950 

0.052* 

Dadu 

-0.095 

0.021 

-4.570 

0.000** 

Shikarpur 

-0.090 

0.021 

-4.190 

0.000** 

Jacobabad 

-0.087 

0.021 

-4.170 

0.000** 

Nawabshah 

-0.073 

0.021 

-3.450 

0.001** 

Sanghar 

-0.070 

0.022 

-3.180 

0.002** 

Constant 

0.785 

0.106 

7.390 

0.000 

SE- Standard Error, **p<0.01, *p<0.05 

 

Table 4 Logistic regression

credcont2 

Coefficient 

SE 

Pseudo R2 

z-value 

p-value 

age 

0.030 

0.028 

0.902 

1.080 

0.282 

landownn1 

-0.353 

1.227 

-0.290 

0.773 

lnintrate 

-3.527 

0.450 

-7.830 

0.000** 

lntotarea 

-0.985 

0.579 

-1.700 

0.089 

famsize2 

-0.372 

0.760 

-0.490 

0.624 

accesset 

3.737 

2.757 

1.360 

0.175 

lnagrinc 

0.824 

0.407 

2.020 

0.043* 

Larkana 

2.600 

0.771 

3.370 

0.001** 

Jacobabad 

-0.848 

1.465 

-0.580 

0.562 

Shikarpur 

-1.023 

1.415 

-0.730 

0.468 

Nawabshah 

-0.995 

1.597 

-0.620 

0.533 

Constant 

-7.199 

5.420 

-1.330 

0.184 

SE- Standard Error, **p<0.01, *p<0.05 

Table 5 Heckman Selection model

 

Coefficient 

SE 

z-value 

p-value 

credcont2 

    

age 

0.002 

0.001 

2.640 

0.008** 

landownn1 

-0.199 

0.049 

-4.090 

0.000** 

lnintrate 

-0.334 

0.007 

-47.570 

0.000** 

lntotarea 

0.048 

0.014 

3.410 

0.001** 

famsize2 

0.074 

0.020 

3.680 

0.000** 

accesset 

0.070 

0.030 

2.330 

0.020* 

Dadu 

-0.246 

0.034 

-7.310 

0.000** 

Shikarpur 

-0.170 

0.033 

-5.170 

0.000** 

Jacobabad 

-0.108 

0.031 

-3.490 

0.000** 

Nawabshah 

-0.152 

0.032 

-4.760 

0.000** 

Sanghar 

-0.174 

0.034 

-5.160 

0.000** 

Constant 

0.757 

0.058 

13.120 

0.000 

Consumption 

    

age 

0.011 

0.005 

2.400 

0.016* 

landownn1 

-0.406 

0.253 

-1.600 

0.109 

lnintrate 

0.119 

0.038 

3.170 

0.002** 

lntotarea 

0.274 

0.095 

2.880 

0.004** 

famsize2 

0.419 

0.106 

3.940 

0.000** 

accesset 

0.381 

0.158 

2.410 

0.016* 

lnagrinc 

-0.016 

0.025 

-0.640 

0.521 

lnprdcst 

0.005 

0.058 

0.090 

0.931 

Dadu 

-0.625 

0.175 

-3.580 

0.000** 

Shikarpur 

-0.887 

0.176 

-5.040 

0.000** 

Jacobabad 

-0.543 

0.166 

-3.270 

0.001** 

Nawabshah 

-0.801 

0.171 

-4.690 

0.000** 

Sanghar 

-0.907 

0.179 

-5.060 

0.000** 

Constant 

-1.008 

0.748 

-1.350 

0.178 

/athrho 

3.492 

0.243 

14.360 

0.000** 

/lnsigma 

-1.647 

0.043 

-38.130 

0.000** 

rho 

0.998 

0.001 

  

sigma 

0.193 

0.008 

  

lambda 

0.192 

0.008 

  

LR test of indep.eqns. :                                                   Chi2=263.76                                            Prob>Chi2 = 0.000                          

SE- Standard Error, **p<0.01, *p<0.05 

Table 6 Endogenous switching regression model

 

Coefficient 

SE      

z-value 

p-value 

credcont2_1 

 

 

 

 

age 

0.002 

0.001 

2.520 

0.012** 

landownn1 

-0.203 

0.058 

-3.480 

0.001** 

lnintrate 

-0.334 

0.007 

-45.360 

0.000** 

lntotarea 

0.044 

0.014 

3.130 

0.002** 

famsize2 

0.068 

0.021 

3.200 

0.001** 

accesset 

0.068 

0.029 

2.340 

0.020* 

Dadu 

-0.247 

0.037 

-6.690 

0.000** 

Shikarpur 

-0.165 

0.032 

-5.130 

0.000** 

Jacobabad 

-0.108 

0.030 

-3.560 

0.000** 

Nawabshah 

-0.146 

0.031 

-4.640 

0.000** 

Sanghar 

-0.167 

0.034 

-4.970 

0.000** 

constant 

0.777 

0.055 

14.010 

0.000 

credcont2_0 

 

 

 

 

age 

0.001 

0.001 

1.430 

0.152 

landownn1 

0.049 

0.024 

2.030 

0.043* 

lnintrate 

-0.335 

0.004 

-75.970 

0.000** 

lntotarea 

-0.001 

0.009 

-0.080 

0.936 

famsize2 

-0.002 

0.015 

-0.140 

0.887 

accesset 

0.045 

0.017 

2.620 

0.009** 

Dadu 

-0.052 

0.022 

-2.400 

0.016* 

Shikarpur 

-0.033 

0.024 

-1.380 

0.168 

Jacobabad 

-0.041 

0.024 

-1.740 

0.082 

Nawabshah 

-0.011 

0.023 

-0.470 

0.637 

Sanghar 

-0.009 

0.023 

-0.390 

0.696 

constant 

0.943 

0.035 

26.930 

0.000 

Consumption 

 

 

 

 

age 

0.012 

0.005 

2.580 

0.010** 

landownn1 

-0.260 

0.289 

-0.900 

0.368 

lnintrate 

0.124 

0.043 

2.890 

0.004** 

lntotarea 

0.234 

0.077 

3.050 

0.002** 

famsize2 

0.362 

0.106 

3.410 

0.001** 

accesset 

0.371 

0.160 

2.330 

0.020* 

Dadu 

-0.568 

0.180 

-3.150 

0.002** 

Shikarpur 

-0.878 

0.181 

-4.850 

0.000** 

Jacobabad 

-0.549 

0.165 

-3.320 

0.001** 

Nawabshah 

-0.778 

0.167 

-4.650 

0.000** 

Sanghar 

-0.892 

0.175 

-5.100 

0.000** 

lnprdcst 

-0.002 

0.030 

-0.070 

0.944 

constant 

-1.117 

0.436 

-2.560 

0.010 

/lns1 

-1.670 

0.064 

-25.910 

0.000** 

/lns2 

-2.347 

0.042 

-56.250 

0.000** 

/r1 

3.911 

0.191 

20.480 

0.000** 

/r2 

0.052 

0.140 

0.370 

0.711 

sigma_1 

0.188 

0.012 

 

 

sigma_2 

0.096 

0.004 

 

 

rho_1 

0.999 

0.000 

 

 

rho_2 

0.052 

0.140 

 

 

LR test of indep.eqns. :                                                           Chi2=262.98                                            Prob>Chi2 = 0.000                          

SE- Standard Error, **p<0.01, *p<0.05 

Conclusion:

The study reveals that credit constraints significantly affect rural farmers’ ability to access formal credit, with factors like interest rates, land ownership, and regional location being key determinants. Credit-constrained households are less likely to apply for formal credit, impacting their welfare and agricultural investment. The findings suggest that policies aimed at reducing interest rates, improving collateral access, and enhancing financial literacy can alleviate these constraints, boosting rural farmers’ welfare and contributing to broader economic development.

This will close in 0 seconds